西宝生物
欢迎访问西宝生物科研产品官网 !

西宝生物

西宝生物中国生命科学领域优选的综合服务商

全国服务热线:400-021-8158

24小时短信服务: 13917439331

您是否在搜:核酸室温保存 | 二噁英检测 | 食品安全 | 玛卡提取物 | 维生素K2 | 修饰性PEG | 岩藻糖

西宝生物
当前位置:首页 » 全站搜索 » 搜 索:器官
剑桥大学:脂肪长在哪里更健康?
近期剑桥大学的一项研究有望解开这一谜团,从而更好地识别并治疗这些高风险人群。研究发现,那些由于遗传原因,不太可能在臀部囤积脂肪,而可能囤积在内脏器官或血液中的人,更容易得2型糖尿病和心血管疾病。这一结果发表在著名医学期刊《JAMA》上。[查看]
http://cxbio.com/Article/jqdxzfcznlgjk_1.html
巨噬细胞是帮助心脏修复甚至再生的关键
巨噬细胞是生存于器官中的白细胞,它们是免疫系统的关键组成部分,它们具有公认的抗感染能力。最近,它们被发现还能够促进组织的修复和再生。[查看]
http://cxbio.com/Article/jsxbsbzxzxfszzsdgj_1.html
发现蛋白Myo1D足以诱导身体不对称性
多年来,为了解决这些谜团,法国国家科学研究中心(CNRS)研究员Stéphane Noselli领导的一个研究团队一直在研究左右不对称性。他们已鉴定出第一个控制着果蝇不对称性的基因,其中果蝇是生物学家青睐的模式生物之一。近期,Noselli团队发现这个基因在脊椎动物中起着相同的作用:它产生的蛋白,即肌球蛋白1D(Myosin 1D, Myo1D),控制着器官在同一方向的卷绕或旋转。[查看]
http://cxbio.com/Article/fxdbmyo1dzyydstbdcx_1.html
新研究:干细胞技术构建人脑再下一城
人类大脑器官的产生既困难又耗时且昂贵,需要复杂的工具和专门知识来首先从皮肤细胞中产生能够变成几乎任何类型细胞的人类诱导多能干细胞( iPSCs ),也被称为成纤维细胞,然后指导这些ipsCs分化成各种相互关联的细胞类型,包括像大脑这样的器官[查看]
http://cxbio.com/Article/xyjgxbjsgjrnzxyc_1.html
大脑类<font color='red'>器官</font>的新型培育方法
在新论文中,资深作者Muotri及其同事描述了一种新的,快速且经济有效的方法,可以将个体体细胞直接重新编程为数百个人的皮质类器官。为此,他们压缩并优化了该过程的几个步骤,以便体细胞被重新编程,扩展和刺激,几乎同时形成皮质细胞。 Muotri说,结果是皮质类器官完全从体细胞发育,只需轻微操作。[查看]
http://cxbio.com/Article/dnlqgdxxpyff_1.html
新型红细胞“搭便车”技术或能将药物精准运送至疾病患处
近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自宾夕法尼亚大学佩雷尔曼医学院的科学家们通过研究开发了一种新型的药物运输技术,其能利用红细胞来运输纳米药物载体(RBC-hitchhiking,红细胞搭便车技术),利用动物模型研究后研究人员发现,这种技术能明显增加运送至选定器官的药物浓度,相关研究或你能帮助改善治疗多种疾病的药物运输技术,比如急性肺部疾病、中风和心脏病发作等。[查看]
http://cxbio.com/Article/xxhxbdbcjshnjywjzysz_1.html
华人科学家揭示经典Wnt信号途径介导YAP对骨稳态的调节
对成年人来说,骨始终处在流失和重建的稳态平衡状态,一个关键的调控基因应该既能够促进骨生成又能抑制脂肪细胞的生成。YAP是受Hippo信号途径负调控的一个转录因子,众多研究已经证明Hippo/YAP是一个在多器官发育和大小调节方面非常保守的信号途径。但YAP在骨稳态维持方面的确切功能还存在争议。最近来自美国凯斯西储大学的华人科学家Wen-Cheng Xiong等人发现了YAP在调节骨稳态方面的新机制。[查看]
http://cxbio.com/Article/hrkxjjsjdwntxhtjjdya_1.html
新示踪技术揭示非肌肉细胞命运
心脏作为脊椎动物最重要的器官之一,主要功能是为血液流动提供动力。心脏发生心肌梗塞后造成心肌细胞大量死亡,心脏功能受到影响。成体心脏是否存在心肌干细胞一直存在争论,之前的研究利用传统的遗传谱系示踪技术认为在成体心脏中存在心肌干细胞,例如Kit+心肌干细胞,Bmi1+心肌干细胞,Scal1+心肌干细胞,Islet+心肌干细胞等,但由于这些心肌干细胞的分子标记本身就表达于部分心肌细胞中,因此这些假设的心肌干细胞向心肌细胞的分化潜能受到质疑。[查看]
http://cxbio.com/Article/xszjsjsfjrxbmy_1.html
不可思议!药物的副作用竟然能够治疗人类脱发!
首先研究人员阐明了一种古老免疫抑制药物—环孢素A(CsA)的分子作用机制,20世纪80年代,环孢素A作为一种关键药物能够抑制器官移植的排斥反应和患者机体的自身免疫疾病。然而这种药物通常会产生严重的副作用,但研究者却发现环孢素A能增强毛发的生长。文章中研究人员利用环孢素A处理离体的人类毛囊细胞,同时进行了一项完整的基因表达分析,结果表明,环孢素A能降低SFRP1蛋白的表达,SFRP1能够抑制包括头发毛囊在内的许多组织的发育和生长。[查看]
http://cxbio.com/Article/bksyywdfzyjrngzlrltf_1.html
重大突破!表达端粒酶的肝细胞可再生肝脏
肝脏是人类疾病的重要来源。理解肝脏自我更新的细胞机制至关重要。我们发现这些罕见的增殖性细胞遍布整个肝脏器官,而且它们有助于肝脏替换受损的细胞。我们认为当对这些细胞的调控发生差错时,它们也可能会导致肝癌。[查看]
http://cxbio.com/Article/zdtpbddlmdgxbkzsgz_1.html
利用干细胞疗法真的能够治疗人类失明吗?
尽管存在很多挑战,科学家们依然会继续寻找新方法来治疗困扰很多患者的眼部疾病,眼睛是一种非常复杂且脆弱的器官,这也就是为何从事这个领域研究的科学家们会花费更长的时间来进行相关研究的原因了。目前研究人员还有需要障碍需要克服,比如干细胞的运输技术,如何在进入眼镜使得干细胞快速与眼睛中的细胞整合,以及如何降低免疫排斥的风险;然而当前研究中,研究人员能够利用生物材料来改善干细胞的整合作用,而相应的研究结果也让研究人员非常高兴,同时这些研究成果也克服了研究人员最初遇到的一些挑战。[查看]
http://cxbio.com/Article/lygxblfzdngzlrlsmm_1.html
<font color='red'>器官</font>移植排异成为过去,华裔科学家找到了应对之法!
休斯敦卫理公会的研究人员发现了一种T细胞代码,可以使自体免疫疾病和器官移植排斥成为过去。来自休斯敦的卫理公会研究所免疫学和移植科学中心的科学家文浩晨博士发现了一个关键的开关,可以控制T细胞的功能。研究结果发表于《免疫学》杂志中。[查看]
http://cxbio.com/Article/qgyzpycwgqhykxjzdlyd_1.html
Nature:重大突破!IL11才是导致<font color='red'>器官</font>纤维化的元凶
在一项新的研究中,来自杜克-新加坡国立大学医学院和新加坡国家心脏中心等研究机构的研究人员通过鉴定心脏、肾脏和其他组织中的慢性纤维化疾病的关键促进物,发现一种被称作白细胞介素11(IL11)的关键性蛋白导致纤维化疾病和器官损伤。[查看]
http://cxbio.com/Article/naturezdtpil11csdzqg_1.html
Science子刊:鉴定出血管是糖尿病的治疗靶标
血管在调节营养物从血液转移到体内的器官中发挥着一种经常被忽视的作用。在一项新的研究中,来自美国斯坦福大学、耶鲁医学院和斯隆凯特林癌症纪念中心的研究人员鉴定出一种分泌的蛋白,即爱帕琳肽(apelin, APLN),在调节脂肪酸跨过血管中的作用。[查看]
http://cxbio.com/Article/sciencezkjdcxgstnbdz_1.html
前降钙素
Fitzgerald 前降钙素 (PCT)是无激素活性的降钙素前肽物质,在正常情况下,PCT由甲状腺C细胞产生与分泌,在正常机体循环中浓度很低甚至测不到。在病理状态下,甲状腺外的其他器官组织(肝、肺、肾、肾上腺、脑和胰腺等)都可能是PCT的生产场所。另外,在内毒素的刺激下,中性粒细胞也可能是PCT的来源。[查看]
http://cxbio.com/Article/qjgs_1.html
记录总数:98 | 页数:7  1234567