-

- CSHL植物遗传学家Rob Martienssen与结构生物学家Leemor john - tor合作,确定了控制植物表观遗传的确切机制。他们的发现可能会对农业、食品供应、环境以及我们对人类基因组的理解产生影响。[查看]
- http://cxbio.com/Article/cellrszzssdnajjhdbgy_1.html
-

- 在皮肤中,一些异常的成年表皮干细胞后来会开启SOX9。现在洛克菲勒的研究人员已经揭示了这一恶性转变背后的机制。事实证明,SOX9属于一类特殊的蛋白质,它控制着遗传信息从DNA到mRNA的传递。这意味着它有能力撬开密封的遗传物质口袋,与之前沉默的基因结合,并激活它们。他们的研究结果发表在《自然细胞生物学》杂志上。[查看]
- http://cxbio.com/Article/20230802_1.html
-

- 西宝生物已建立蛋白进化及表达、PEG及其衍生物、诊断试剂开发、合成生物学等技术应用平台,基于强大的研究技术团队,我们可以为客户提供多种生物实验外包服务,包括重组蛋白表达纯化类服务、分子/免疫学检测类服务、mRNA制备与递送及整体项目技术服务。[查看]
- http://cxbio.com/Article/xbswjsfwxm_1.html
-

- 在蛋白质交联剂中,由于具有两个不同的反应基的交联剂在蛋白偶联的反应受控,这类偶联试剂也得到了研究者更多地关注。在同时将药物和大分子载体连接,制备药物-载体结合物,很好的改善和控制药物在体内的转运和代谢,实现缓释给药和定向给药,提高生物利用度和治疗指数,满足了载体药物需要在体内定量,定位释放的要求。[查看]
- http://cxbio.com/Article/yydbzjljljkthhxywdgj_1.html
-

- 细胞培养是指将细胞从生物体中取出并在适当的培养基中进行体外培养的过程。细胞培养是生物学和医学研究中常用的实验技术,它可以提供大量的细胞用于研究和应用。细胞系和细胞株是细胞生物学中常用的两个概念,它们在实验室研究中起着重要的作用。[查看]
- http://cxbio.com/Article/xbpydgbxbzxbx_1.html
-

- 马克斯·德尔布赖克中心柏林医学系统生物学研究所(MDC-BIMSB)的研究人员已经开发出一种名为基因组结构测绘(GAM)的技术,可以窥视基因组,并以绚丽的彩色看到它。Pombo实验室在Nature Methods上发表的一项新研究报告称,GAM揭示了基因组空间结构的信息,而这些信息对于仅使用Hi-C(2009年开发的用于研究DNA相互作用的主要工具)的科学家来说是不可见的。[查看]
- http://cxbio.com/Article/naturemethodsyjfzjyz_1.html
-

- 染色体不稳定性与每个癌细胞携带的染色体数量的变化有关。表观遗传改变改变细胞中基因的开启或关闭,但不改变细胞的DNA。这项研究结果发表在6月7日的《自然》杂志上,它不仅为基础科学生物学研究开辟了一个肥沃的新领域,而且对临床护理也有影响。[查看]
- http://cxbio.com/Article/naturehghdkkkll_1.html
-

- 伦敦大学学院的一项新研究揭示了一种罕见基因突变的生物学基础,研究描述了FAAH- out的突变如何“抑制”FAAH基因的表达,以及对与伤口愈合和情绪有关的其他分子途径的连锁反应。希望这些发现将导致新的药物靶点,并在这些领域开辟新的研究途径。[查看]
- http://cxbio.com/Article/FAAH-OUT_1.html
-

- 来自马克斯普朗克分子细胞生物学和遗传学研究所(MPI-CBG)、生命卓越物理集群(PoL)、德累斯顿工业大学生物技术中心(BIOTEC)和印度国家生物科学中心(NCBS)的一组研究人员发现了一种利用替代能源的新型分子系统,并具有执行机械任务的新机制。这种分子马达的工作原理与传统的斯特林发动机相似,通过反复收缩和膨胀,帮助将货物分配到膜结合的细胞器。它是第一个使用两种成分的马达,两种不同大小的蛋白质,Rab5和EEA1,由GTP而不是ATP驱动。[查看]
- http://cxbio.com/Article/kxjfxlylxdfzmd_1.html
-

- 在今年于丹麦哥本哈根(4月15-18日)举行的欧洲临床微生物学与传染病大会(ECCMID)上发表的一项新研究确定了几种保护性药物,这些药物可能会减轻抗生素造成的附带损害,而不会影响它们对有害细菌的有效性。[查看]
- http://cxbio.com/Article/adverseeffecrsofantibiotics_1.html
-

- 聚乙二醇化修饰技术通过共价键,将聚乙二醇与被修饰药物耦联,改善药物的理化性质和生物学活性。通过聚乙二醇修饰小分子药物、蛋白质、肽类、寡核苷酸等可以增强疏水性药物、蛋白质、核酸、脂质体的溶解性,提高稳定性和延长循环时间,现已成为生物技术和生物医学界关注的焦点,广泛应用于大分子与表面的连接、药物和脂质体的靶向性、纳米颗粒功能化等诸多领域。[查看]
- http://cxbio.com/Article/GeneralPEGderivatives_1.html
-

- 拉霍亚免疫研究所(LJI)科学家Erica Ollmann Saphire博士和Shane Crotty博士领导的一项新研究表明,一种抗体M28可以结合并中和LCMV。多亏了这项新工作,我们现在更接近于设计针对LCMV的疫苗和治疗方法。他们的论文“抗体介导的淋巴细胞性绒膜脑膜炎病毒中和的结构基础”于2023年3月28日发表在《细胞化学生物学》上。[查看]
- http://cxbio.com/Article/lbxbxmlcnmybdlcmvyjx_1.html
-

- 荧光蛋白被广泛应用于生物学研究,使各种类型的细胞或结构可见。例如,与癌症有关的干细胞或蛋白质。由Dorus Gadella领导的阿姆斯特丹大学研究小组开发了一种新的鲜红色荧光蛋白:mScarlet3。他们在权威杂志《自然方法》上发表了这种蛋白质的特性和DNA代码。[查看]
- http://cxbio.com/Article/naturemethodsxdlhsyg_1.html
-

- 拉霍亚免疫研究所(LJI)的研究人员终于发现了一种名为O-GlcNAc转移酶(OGT)的酶在维持细胞健康中的作用。这些发现发表在《美国国家科学院院刊》(Proceedings of The National Academies of Sciences)上,为细胞生物学提供了至关重要的见解,并可能为重大医学突破铺平道路。[查看]
- http://cxbio.com/Article/pnaskxjjkxbchzm_1.html
-

- 莫菲特癌症中心的研究人员,由癌症生物学家Eric Lau博士领导,已经确定了一种相对自然的方法来增加TILs的数量和抗肿瘤活性。在一篇发表在《Nature Cancer》杂志上的新文章中,Lau的团队展示了L-岩藻糖 ,一种红色和棕色海藻富含的无毒膳食植物糖,如何增加TILs,促进抗肿瘤免疫,提高免疫治疗的疗效。[查看]
- http://cxbio.com/Article/sylyztldkhssl_1.html
相关搜索
西宝生物资讯
-
西宝生物企业营业执照 -
西宝生物对外贸易经营者备案登记表 -
西宝生物 laysan - 代理证书 -
西宝生物 Ludger - 代理证书 -
西宝生物 Reagecon - 代理证书 -
西宝生物 富士 - 和光纯药 代理证书 -
西宝生物 Fortis - 代理证书 -
西宝生物 环凯 - 代理证书 -
西宝生物企业系统建设优秀单位 -
西宝生物 中国制造网认证供应商 -
西宝生物 Lumiprobe代理证书 -
西宝生物 Elicityl - 代理证书 -
西宝生物 LKT - 代理证书 -
西宝生物 2A - 代理证书 -
西宝生物 高新技术企业证书 -
西宝生物 BioVendor - 代理证书 -
西宝生物 Bioporto - 代理证书 -
西宝生物 BioAssay - 代理证书 -
西宝生物 Jackson Immuno Research - 代理证书 -
西宝生物 Creative PEGWorks - 代理证书




