西宝生物
欢迎访问西宝生物科研产品官网 !

西宝生物

西宝生物中国生命科学领域优选的综合服务商

全国服务热线:400-021-8158

24小时短信服务: 13917439331

您是否在搜:核酸室温保存 | 二噁英检测 | 食品安全 | 玛卡提取物 | 维生素K2 | 修饰性PEG | 岩藻糖

西宝生物
当前位置:首页 » 全站搜索 » 搜 索:DNA修复
PNAS:有缺陷的<font color='red'>DNA修复</font>机制与亨廷顿氏病
麦克马斯特大学的研究人员发现,亨廷顿舞蹈症患者体内突变的蛋白质不能像预期的那样修复DNA,从而影响了脑细胞自愈的能力。这项研究于2024年9月27日发表在美国国家科学院院刊上,发现亨廷顿蛋白有助于产生对修复DNA损伤很重要的特殊分子。这些分子被称为Poly [ADP-ribose],聚集在受损的DNA周围,像一张网一样,吸引修复过程所需的所有因素。[查看]
http://cxbio.com/Article/pnasyqxddnaxfjzyhtds_1.html
《Cell》核自噬——癌症治疗中关键的<font color='red'>DNA修复</font>机制
研究人员在《Cell》杂志上报道了他们的发现,他们描述了DNA修复的一个新过程,在这个过程中,细胞从细胞核中去除有害的DNA蛋白损伤,确保其遗传物质的稳定性,促进细胞存活。研究小组称这种新过程为核噬。核自噬是一种天然的细胞清洁机制,被称为自噬,是修复DNA和确保细胞存活所必需的。它涉及一种称为TEX264的常见表达蛋白。[查看]
http://cxbio.com/Article/cellhzsazzlzgjddnaxf_2_1.html
《Nature》新发现揭示了<font color='red'>DNA修复</font>途径的关键过程
这项工作揭示了我们最重要的DNA修复系统之一如何识别DNA损伤并启动修复的基本机制,多年来一直困扰着研究人员。利用尖端成像技术可视化这些DNA修复蛋白如何在单个DNA分子上移动,并用电子显微镜捕捉它们如何“锁定”特定的DNA结构,这项研究为更有效的癌症治疗开辟了道路。[查看]
http://cxbio.com/Article/naturexfxjsldnaxftjd_1.html
Nature最新发现一条鲜为人知的<font color='red'>DNA修复</font>途径:让人惊叹的协作
然而,一些癌症可以劫持这些途径为自己的利益。Susanna Stroik博士和Dale Ramsden博士都是北卡罗来纳大学医学院和北卡罗来纳大学Lineberger综合癌症中心生物化学和生物物理系的研究人员,他们拼凑出了一条鲜为人知的DNA修复途径,称为聚合酶θ介导的末端连接(TMEJ)。[查看]
http://cxbio.com/Article/20231117_industrialnews_1.html
大脑越用越“废”?Nature发现神经元<font color='red'>DNA修复</font>机制,或推动相关疾病研究进展
近日,来自哈佛医学院的研究人员在Nature上发表了一篇题为“A NPAS4-NuA4 complex couples synaptic activity to DNA repair”的研究论文。该项研究发现了神经元中存在着一种独特的DNA修复机制,解释了为什么神经元在高强度重复工作的情况下仍然能够持续发挥作用。[查看]
http://cxbio.com/Article/dnyyyfnaturefxsjydna_1.html
Nat Commun:参与<font color='red'>DNA修复</font>的蛋白质可能有助于抑制癌症
每天,人体内的细胞都会经历无数次的分裂。新生的细胞用于替换分旧的,损坏的或死掉的细胞。不过,在细胞分裂之前, DNA会首先复制产生精确副本,并将其传递给新细胞。[查看]
http://cxbio.com/Article/natcommuncydnaxfddbz_1.html
Nature:开发出Cas9-MMEJ可编程基因编辑方法,有望治疗143种由DNA微重复引起的疾病
在一项新的研究中,来自美国马萨诸塞大学医学院的研究人员开发出一种利用CRISPR-Cas9和一种很少使用的DNA修复途径编辑和修复一种特定类型的与微重复(microduplication)相关的基因突变。这种可编程基因编辑方法克服了之前在基因校正中所遭遇的低效率。相关研究结果于2019年4月3日在线发表在Nature期刊上,论文标题为“Precise therapeutic gene correction by a simple nuclease-induced double-stranded break”。[查看]
http://cxbio.com/Article/naturekfccas9mmejkbc_1.html
厄运不断,CRISPR/Cas9基因编辑竟导致大片段DNA缺失和重排
在几天前的一项研究中,来自美国伊利诺伊大学芝加哥分校的研究人员发现在利用CRISPR/Cas9进行基因编辑遭遇失败(大约在15%的时间发生)时,这通常是由于Cas9蛋白持续地结合到DNA上,这会阻止DNA修复酶进入切割位点。[查看]
http://cxbio.com/Article/eybdcrisprcas9jybjjd_1.html
JCI:突破!科学家通过破坏细胞<font color='red'>DNA修复</font>的“跷跷板”来成功杀灭癌细胞
近日,一篇发表在国际杂志Journal of Clinical Investigation上的研究报告中,来自埃默里大学的研究人员通过研究发现,癌细胞依赖的一种免于细胞死亡的特殊蛋白或能帮助调节癌细胞的DNA修复。文章中,研究者阐明了如何使得这种名为Mcl-1的蛋白质失去功能来促进癌细胞对DNA复制压力变得更加敏感,靶向作用Mcl-1蛋白的化合物或许就能作为一类新型的抗癌药物。[查看]
http://cxbio.com/Article/jcitpkxjtgphxbdnaxfd_1.html
Cell:科学家发现<font color='red'>DNA修复</font>的关键酶
日前,一项刊登在国际杂志Cell上的研究报告中,来自澳大利亚国立大学和德国海德堡大学的研究人员通过研究发现了一种DNA修复过程中的必要组分,该研究或为后期开发新型抗癌药物提供一定的思路。[查看]
http://cxbio.com/Article/cellkxjfxdnaxfdgjm_1.html
三篇Nature文章深入解析<font color='red'>DNA修复</font>的关键过程
我们细胞中的DNA会被多种外部因子持续损伤,比如包含烟草烟雾的致癌物或来源于太阳光的紫外线辐射等;如果未被修复,这些损伤就会引发突变,最终就会导致细胞癌变;那么细胞为何不快速有效地进行DNA损伤的修复呢?[查看]
http://cxbio.com/Article/spnaturewzsrjxdnaxfd_1.html
诺贝尔化学奖花落<font color='red'>DNA修复</font>,三名科学奖荣获殊荣
2015年度诺贝尔化学奖在瑞典皇家科学学院于瑞典斯德哥尔摩当地时间10月7日11时45分揭晓,Thomas Lindahl、Paul Modrich和Aziz Sancar共计三名科学家获奖,以表彰他们在DNA修复机制领域做出的杰出贡献。三位科学家在DNA修复机制领域的研究为深入了解细胞功能、保证基因组信息精确以及癌症治疗手段的研究打开了窗口。[查看]
http://cxbio.com/Article/nbehxjhldnaxfsmkxjrh_1.html
记录总数:12 | 页数:11