西宝生物
欢迎访问西宝生物科研产品官网 !

西宝生物

西宝生物中国生命科学领域优选的综合服务商

全国服务热线:400-021-8158

24小时短信服务: 13917439331

您是否在搜:核酸室温保存 | 二噁英检测 | 食品安全 | 玛卡提取物 | 维生素K2 | 修饰性PEG | 岩藻糖

西宝生物
当前位置:首页 » 全站搜索 » 搜 索:DNA
自然-通讯:利用CRISPR将皮肤细胞转变为多能干细胞
近日,来自芬兰、瑞士、英国的一个研究小组在《自然-通讯》上发表文章,首次通过激活细胞自身的基因,成功将皮肤细胞转化为多能干细胞。据报道,该研究小组使用了一类CRISPRa基因编辑技术,该技术不切割DNA,可以在不改变基因组的情况下激活基因表达。到目前为止,只有通过向皮肤细胞内人工引入一组名为Yamanaka因子的关键基因,才有可能激活细胞重编程,实现皮肤细胞向干细胞转化。[查看]
http://cxbio.com/Article/zrtxlycrisprjpfxbzbw_1.html
西宝生物又添新品 牵手近岸科技提供高品质蛋白
上海近岸科技有限公司是专门从事重组蛋白质制备工艺开发及生产的高科技企业。西宝生物代理novoprotein,提供PCR系列、基因克隆相关、RT-PCR和qPCR系列、CRISPR/Cas9 基因编辑系统、NGS 文库构建、DNA 分子标量、蛋白研究相关、修饰酶系列等分子生物学及重组蛋白产品。[查看]
http://cxbio.com/Article/xbswytxpqsjakjtggpzd_1.html
重大进展!开发出一种新的<font color='red'>DNA</font>合成方法
在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和联合生物能源研究所的研究人员发明了一种合成DNA的新方法。这种方法有望更容易地更快速地合成DNA,并不需要使用毒性化学物,而且可能是更准确的。鉴于具有更高的准确性,这种技术能够产生比当前的方法长10倍的DNA链。这些研究人员说,这种易用性可能会导致研究实验室中普遍存在的“DNA打印机”,类似于如今许多车间中的三维打印机。[查看]
http://cxbio.com/Article/zdjzkfcyzxddnahcff_1.html
FSI Genetics:新工具可从未知个体的<font color='red'>DNA</font>片段预测出该个体的眼睛、毛发和皮肤颜色!
最近,一个由美国印第安纳大学科学院和荷兰鹿特丹Erasmus MC大学医学中心的科学家领导的国际团队开发出了一种新工具,该工具能从犯罪现场或考古遗迹等场景中获得的人类生物样本--即使是很小的DNA样本--中准确预测出样本所有者的眼睛、头发和皮肤的颜色。这种一体化的色素分析工具采用的是一种前所未有的方式,通过一个开放获取的网络工具将三种色素的特性集合在一起,提供出对该人外形的描述。[查看]
http://cxbio.com/Article/fsigeneticsxgjkcwzgt_1.html
人类胚胎干细胞重塑生物学概念并进入临床
1998年,当研究人员最早弄清楚如何获得人类胚胎干细胞时,Dieter Egli正要开始念研究生。此后的20年里,这种多产细胞一直伴随着Egli的职业生涯。这位如今在美国哥伦比亚大学工作的生物学家,利用它们探寻了来自成人细胞的DNA如何被重新编程成胚胎状态,并且解决了关于糖尿病发生和治疗的问题。Egli甚至帮助开发了一种全新的人类胚胎干细胞形式。其能简化关于不同人类基因作了什么研究。[查看]
http://cxbio.com/Article/rlptgxbzsswxgnbjrlc_1.html
美国科学家潜心研究30年,迎来端粒酶重大突破,有望逆转衰老问题
用低温电子显微镜(cryo-EM)测定人端粒酶全酶结构的空间填充模型。端粒酶催化染色体末端的端粒DNA(绿色)的合成,以补偿基因组复制过程中端粒的丢失。该结构由两个具有不同功能的裂片组成:负责DNA合成的催化核和一个H/ACA核糖核酸,对端粒酶的生物起源和对Cajal体的定位很重要。由于端粒酶的调控与癌症和衰老有关,因此人类端粒酶的第一个体系结构可视化是端粒酶领域和端粒治疗设计的一个重要突破。[查看]
http://cxbio.com/Article/mgkxjqxyj30nyldlmzdt_1.html
科学家阐明病毒利用宿主细胞中关键蛋白进行繁殖的分子机制
随着现代DNA测序技术的发展,科学家们能够非常容易地在一个有机体中鉴别出所有编码蛋白质的基因,然而他们常常却无法有效理解这些蛋白质的细胞功能,文章中,研究人员就重点对一种名为ZC3H11A的人类基因进行了深入研究,长达20年时间研究人员一直并不清楚该基因功能的重要性,Shady Younis博士说道,很多年以来我们一直非常感兴趣对该基因进行研究,最终我们利用CRISPR-Cas9基因编辑技术实现了在人类细胞系中失活该基因,然而,ZC3H11A基因的失活似乎并未产生太大效应,这就表明,该基因似乎对人类细胞的生长并不必要。[查看]
http://cxbio.com/Article/kxjcmbdlyszxbzgjdbjx_1.html
个体化癌症疫苗有望改善癌症的治疗方式
癌细胞的DNA在不停地发生突变,与此同时,它们也会产生一些内部多肽序列发生微小改变的蛋白质。就如同我们体内的每一个细胞都会递呈一部分多肽给免疫系统来认定它们是“自己人”,癌细胞会递呈它们错误的新多肽(或新抗原),揭示它们的外来属性或“异己分子”。在接收了这些新抗原后,免疫系统的树突细胞(DGs)可以启动强大的T细胞响应来攻击那些表达它们的癌细胞。[查看]
http://cxbio.com/Article/gthazymywgsazdzlfs_1.html
Nat Commun:新型基因编辑技术或能制造出完美的“双胞胎”多能干细胞
DNA的单突变俗称为单核苷酸多态性(SNPs),其是人类基因组中最常见的突变,如今研究人员已经知道有超过1000万个SNPs,很多SNPs都与多种人类疾病直接相关,比如阿尔兹海默病、心脏病和糖尿病等,为了理解SNPs在遗传性疾病中的关键角色,本文中,研究人员从捐赠者机体中开发出了诱导多能干细胞(ips)。[查看]
http://cxbio.com/Article/natcommunxxjybjjshnz_1.html
Science:重磅!首次实时观察到凝缩蛋白挤压<font color='red'>DNA</font>形成环状结构
引人注目的是,活的细胞当准备分裂时,能够将一堆杂乱的长达两米的DNA包装成整齐的微小染色体。然而,科学家们几十年来一直对这个过程是如何发生的感到困惑。如今,在一项新的研究中,来自荷兰代尔夫特理工大学卡夫利研究所和位于德国海德堡的欧洲分子生物学实验室(EMBL)的研究人员分离出这个过程,拍摄它的影像,并且实时观察一种被称作凝缩蛋白(condensin)的蛋白复合物如何缠绕DNA从而挤压出环状结构(loop)。通过在DNA长链中挤压出许多这样的环状结构,细胞高效地压缩它的基因组,因此细胞中的基因组能够均匀分布到它的两个子细胞中。相关研究结果于2018年2月22日在线发表在Science期刊上,论文标题为“Real-time imaging of DNA loop extrusion by condensin”。[查看]
http://cxbio.com/Article/sciencezbscssgcdnsdb_1.html
JCI:突破!科学家通过破坏细胞<font color='red'>DNA</font>修复的“跷跷板”来成功杀灭癌细胞
近日,一篇发表在国际杂志Journal of Clinical Investigation上的研究报告中,来自埃默里大学的研究人员通过研究发现,癌细胞依赖的一种免于细胞死亡的特殊蛋白或能帮助调节癌细胞的DNA修复。文章中,研究者阐明了如何使得这种名为Mcl-1的蛋白质失去功能来促进癌细胞对DNA复制压力变得更加敏感,靶向作用Mcl-1蛋白的化合物或许就能作为一类新型的抗癌药物。[查看]
http://cxbio.com/Article/jcitpkxjtgphxbdnaxfd_1.html
Science:重大进展!开发出单链<font color='red'>DNA</font>/RNA折纸术
一个新浮现的领域是DNA折纸术(DNA origami)。DNA折纸术科学家们正在梦想着各种各样的比人的头发小一千倍的形状,并希望这些形状有朝一日引发计算、电子学和医学变革。[查看]
http://cxbio.com/Article/sciencezdjzkfcdldnar_1.html
Cell Rep:突破!科学家阐明单个线粒体的首个<font color='red'>DNA</font>序列
日前,一项刊登在国际杂志Cell Reports上的研究报告中,来自宾夕法尼亚大学Perelman医学院的研究人员通过研究发现,单一细胞中线粒体之间的DNA序列或许有很大的不同;本文研究能够帮助研究人员阐明单一线粒体突变积累所诱发的多种疾病背后的分子机制,同时也能帮助研究人员开发治疗多种疾病的新型疗法。[查看]
http://cxbio.com/Article/cellreptpkxjcmdgxltd_1.html
PNAS:重大进展!制定出利用CRISPR/Cas9高效编辑基因组规则
在一项新的研究中,来自美国约翰霍普金斯大学的研究人员将不同的供者DNA组合插入到人胚胎肾细胞中,这些细胞以其生长良好的能力和经常用于癌症研究中而为人所知。他们使用携带着编码一种绿色荧光蛋白的基因的供者DNA,当这种基因成功地插入到细胞基因组中时,这种绿色荧光蛋白就会在细胞的核膜上发出绿色荧光。相关研究结果于2017年11月27日在线发表在PNAS期刊上[查看]
http://cxbio.com/Article/pnaszdjzzdclycrisprc_1.html
重磅!Nature和Science同日打擂台发表新型<font color='red'>DNA</font>/RNA碱基编辑器,可校正点突变
自从5年前CRISPR热潮开始以来,科学家们就竞相开发这种强大工具的更加全面或高效的版本,从而能够极大地简化DNA编辑。本周发表在Science期刊和Nature期刊上的两项研究进一步扩大了CRISPR的使用范围,开发出一种更加微妙的被称作碱基编辑(base editing)的方法来修复遗传物质:一项研究扩展了一种编辑DNA的策略,而另一项研究通过对RNA进行碱基编辑而开辟了新的领域[查看]
http://cxbio.com/Article/zbnaturehsciencetrdl_1.html
记录总数:274 | 页数:19  <...891011121314151617...>