-
-
国家心血管研究中心(CNIC)的GENOXPHOS(氧化磷酸化系统的功能遗传学)小组发现了钠在细胞能量产生中的关键作用。这项研究由GENOPHOS小组组长José Antonio Enríquez博士领导,来自马德里康普顿斯大学、加州大学洛杉矶分校David Geffen医学院以及西班牙虚弱和健康衰老研究网络(CIBERFES)和心血管疾病研究网络(CIBERCV)的科学家也参与了这项研究。这项发表在《细胞》杂志上的研究表明,呼吸复合体I是线粒体电子传递链上的第一个酶,它具有一种迄今为止未知的钠转运活性,这对有效的细胞能量产生至关重要。[查看]
-
http://cxbio.com/Article/cellywdfxlnzyzxltnlc_1.html
-
-
转录因子Foxp3缺失的调节性T细胞(Treg细胞)缺乏抑制功能,表现为效应T (Teff)细胞样表型。近日来自波士顿儿童医院免疫学科和哈佛医学院儿科的Talal A. Chatila发现,Foxp3缺乏使雷帕霉素(mTOR)复合物2 (mTORC2)信号通路的代谢检查点激酶靶蛋白失调,并引起有氧糖酵解和氧化磷酸化,相关研究成果发表在《Nature Immunology》上,题为"Functional reprogramming of regulatory T cells in the absence of Foxp3"。[查看]
-
http://cxbio.com/Article/natimmunolyjjsfoxp3q_1.html
-
-
在这项研究中,研究人员发现肺癌干细胞依赖氧化磷酸化来产生细胞所需能量,维持细胞存活,并且这一过程依赖线粒体柠檬酸转运蛋白SLC25A1的活性。研究结果表明在癌症干细胞中SLC25A1在维持线粒体柠檬酸储备和氧化还原平衡方面发挥重要作用,抑制SLC25A1的活性会导致活性氧簇的积累因此抑制癌症干细胞的自我更新能力。[查看]
-
http://cxbio.com/Article/kxjfxfagxbdxrdzdqzbx_1.html
-
-
线粒体是密切与能量代谢相关的细胞器,无论是细胞的成活(氧化磷酸化)和细胞死亡(凋亡)均与线粒体功能有关,特别是呼吸链的氧化磷酸化异常与许多人类疾病有关。流行的观点认为,线粒体在进化史上是一种细菌,被其他细胞捕获吞噬后变成一个细胞器。线粒体具有产生能量物质ATP的能力,也拥有自己独立于细胞核的遗传基因,当然在进化过程中已经失去部分基因,需要依靠细胞核的基因协助编码一些功能蛋白。例如人类的线粒体只有37个基因。[查看]
-
http://cxbio.com/Article/xltyzdtdfa_1.html