西宝生物
欢迎访问西宝生物科研产品官网 !

西宝生物

西宝生物中国生命科学领域优选的综合服务商

全国服务热线:400-021-8158

24小时短信服务: 13917439331

您是否在搜:核酸室温保存 | 二噁英检测 | 食品安全 | 玛卡提取物 | 维生素K2 | 修饰性PEG | 岩藻糖

西宝生物
当前位置:首页 » 全站搜索 » 搜 索:RNA
PNAS提出新视角:低温下<font color='red'>RNA</font>的新生物化学
核糖核酸(RNA)是一种在生物遗传学中具有重要功能的生物分子,在生命的起源和进化中起着关键作用。RNA的组成与DNA非常相似,它能够执行各种生物功能,这取决于它的空间构象,即分子在自身上折叠的方式。现在,发表在《美国国家科学院院刊》(PNAS)上的一篇论文首次描述了RNA在低温下折叠的过程如何为研究地球上的原始生物化学和生命进化开辟了一个新的视角。[查看]
http://cxbio.com/Article/pnastcxsjdwxrnadxswh_1.html
一种新化学修饰可以减少si<font color='red'>RNA</font>药物的脱靶效应
小干扰RNA (siRNA)药物是一类沉默与遗传疾病相关的特定基因的治疗药物。然而,siRNA药物面临挑战,因为siRNA通常会使靶基因以外的基因沉默,从而产生副作用。日本名古屋大学的一个研究小组利用甲酰胺成功地用化学方法改变了siRNA,从而降低了这些脱靶效应的风险,提高了用于基因治疗的siRNA药物的安全性。研究结果发表在《Nucleic Acids Research》杂志上。[查看]
http://cxbio.com/Article/yzxhxxskyjssirnaywdt_1.html
Cell新研究直面挑战:揭开Glyco<font color='red'>RNA</font>的面纱——它们确实存在
发表在《细胞》杂志上的一项新研究中,Flynn和他的同事发现了RNA与N-glycans连接的机制。在这项研究之前,已知只有蛋白质和脂质与聚糖结合。Flynn团队现在将RNA添加到这个列表中,这一发现对理解细胞生物学具有重要意义。他说:“我们的工作证明,实际上有三类糖缀合物:蛋白质、脂质和RNA。”这一发现不仅扩大了已知糖缀合物的范围,而且为研究这些糖RNA的功能开辟了新的途径。[查看]
http://cxbio.com/Article/cellxyjzmtzjkglycorn_1.html
一个核仁小分子<font color='red'>RNA</font>在调节细胞衰老的作用:SNORA13是多种衰老必需的
细胞衰老是一把“双刃剑”,细胞衰老对人类健康和疾病的广泛影响强调了全面了解驱动这一关键应激反应途径的分子机制的重要性。由德克萨斯大学西南医学中心的研究人员领导的一个研究小组发现了一种细胞调节衰老的新方法,发表在《Cell》杂志上的这一发现,可能有一天会导致对各种与衰老相关的疾病的新干预,包括神经退行性疾病、心血管疾病、糖尿病和癌症,以及对一系列被称为核糖体病的疾病的新疗法。[查看]
http://cxbio.com/Article/industrial_news20240719_1.html
核糖体和ZAK蛋白刺激细胞对紫外线辐射损伤的初始反应
在最近的一项研究中,约翰霍普金斯医学院的研究人员认为,细胞的信使RNA (mRNA) -;遗传物质的主要翻译和调节者-;与一种叫做ZAK的关键蛋白质一起,刺激细胞对紫外线辐射损伤的初始反应,并在细胞的生死中起着关键作用。[查看]
http://cxbio.com/Article/htthzakdbcjxbdzwxfss_1.html
病毒吸收宿主<font color='red'>RNA</font>,急性感染可变慢性感染
戊型肝炎病毒是如何逃避免疫系统的?为什么感染会变成慢性而无法治愈?研究人员首次想要找出并分析一名慢性感染患者在一年多时间内的所有病毒种群。他们详细检查了来自血液样本的180多个个体序列。研究人员在2024年6月6日的《Nature Communications》杂志上发表了研究报告。[查看]
http://cxbio.com/Article/bdxsszrnajxgrkbmxgr_1.html
《Nature》新技术捕获了短寿命<font color='red'>RNA</font>,从而揭示了细胞中基因转录的隐秘协调方式
麻省理工学院的研究人员发明了一种新技术,使他们能够观察细胞中基因和增强子激活的时间。当一个基因与一个特定的增强子几乎同时被激活时,它强烈表明该增强子控制着该基因。[查看]
http://cxbio.com/Article/20240607_industrialnews_1.html
Nature子刊:t<font color='red'>RNA</font>修饰的细胞过程影响了疟疾寄生虫产生耐药性的能力
摘要:人类疟疾的最致命的疟原虫恶性疟原虫(P. falciparum)正在对ART产生部分耐药性。 疟疾是一种蚊子传播的传染病,仍然是一个重大的全球健康威胁。2022年,全球有2.49亿人罹患此病,60.8万人死亡。以青蒿素(ART)为基础的联合疗法通常被用作患者的一线治疗方法,但是它们的有效性正受到威胁,因为导致人类疟疾的最致命的疟原虫恶性疟原虫(P. falciparum)正在对ART产生部分耐药性。 SMART突破性研究确定疟疾寄生虫耐药性背后的机制 由疟原虫引起的疟疾正在对以青蒿素为基础的联合疗法[查看]
http://cxbio.com/Article/20240520_industrialnews_1.html
<font color='red'>RNA</font>修饰是阿尔茨海默病中线粒体蛋白合成中断的原因
美因茨约翰内斯·古腾堡大学(JGU)的一组研究人员已经确定了导致阿尔茨海默病患者线粒体功能障碍的机制,从而导致大脑能量供应减少。[查看]
http://cxbio.com/Article/rnaxssaechmbzxltdbhc_1.html
长寿<font color='red'>RNA</font>?Science首次发现了长寿<font color='red'>RNA</font>在细胞寿命中的突出作用
最新公布了一项研究,首次在哺乳动物中表明,对细胞内各种生物过程至关重要的分子:RNA可以终生存在。[查看]
http://cxbio.com/Article/csrnasciencescfxlcsr_1.html
一种有助于防止DNA复制错误的<font color='red'>RNA</font>分子
科学家们发现了一种名为“lncREST”(长链非编码RNA复制压力)的RNA,并揭示了它在触发对细胞快速分裂引起的压力的有效反应中的作用。LncREST定位于染色质(DNA在细胞中组织的结构)。它的主要功能是促进DNA复制和DNA损伤修复过程中关键蛋白质的定位。[查看]
http://cxbio.com/Article/yzyzyfzdnafzcwdrnafz_1.html
初识外泌体
外泌体(Exosome)是细胞分泌的一种细胞外囊泡,直径约为30-150 纳米(nm)。人体中几乎所有类型的细胞均能产生外泌体,外泌体遍布我们全身,存在于血液、尿液、脑脊液、唾液、乳汁、精液、腹腔积液、关节滑液等生物体液中。外泌体携带有多种蛋白质、脂类、DNA和RNA等重要信息,因此通过外泌体的转移能够实现细胞间的物质运输和信息传递[查看]
http://cxbio.com/Article/Exosome_p1_1.html
《Cell》身体发炎,究竟是谁负责精准地招募中性粒细胞?
新的研究表明,细胞表面RNA是中性粒细胞募集到炎症部位的关键。这些中性粒细胞细胞表面的“糖RNA”促进与内皮细胞的结合和跨内皮细胞的迁移。结合先前的研究表明,glycoRNAs可以在许多细胞类型中发现,glycoRNAs可能在多种细胞类型和多种生物环境中发挥重要功能。[查看]
http://cxbio.com/Article/20240124_industrialnews_1.html
1型糖尿病新模型:<font color='red'>RNA</font>编辑破坏模拟没有病毒参与的早期疾病
最近,希伯来大学哈达萨医学院、巴伊兰大学和范德比尔特大学的研究人员在《Cell Metabolism》杂志上发表了一项研究,他们为1型糖尿病(T1D)的早期阶段开发了一种新的范式,表明了一种与病毒感染无关的新病因。该团队研究了一种名为RNA编辑的过程,它的作用是拆除内源性RNA分子[查看]
http://cxbio.com/Article/20230102_industrialnews_1.html
神秘的小<font color='red'>RNA</font>分子:第一个自然产生的,能调节选择性剪接的<font color='red'>RNA</font>
一种非编码RNA是名为4.5SH的小RNA,仅在小鼠和大鼠等小型啮齿动物中发现。它由其基因的多个拷贝产生的,导致每个细胞积累多达10,000个拷贝的RNA分子。由北海道大学Shinichi Nakagawa教授领导的一个研究小组发现了4.5 SH RNA的新作用——在mRNA成熟过程中规避小鼠DNA中的突变。他们的研究结果发表在《分子细胞》杂志上。[查看]
http://cxbio.com/Article/20231221_industrialnews_1.html
记录总数:270 | 页数:18  <...3456789101112...>