西宝生物
欢迎访问西宝生物科研产品官网 !

西宝生物

西宝生物中国生命科学领域优选的综合服务商

全国服务热线:400-021-8158

24小时短信服务: 13917439331

您是否在搜:核酸室温保存 | 二噁英检测 | 食品安全 | 玛卡提取物 | 维生素K2 | 修饰性PEG | 岩藻糖

西宝生物
当前位置:首页 » 全站搜索 » 搜 索:基因
seebio品牌自主产品2013年文献引用
    1. 文章题目:β-甘露聚糖酶的基因克隆、分子改造及低聚甘露糖的酶法制备 期    刊:【博士】江南大学 发表时间:01 December 2013 作    者:唐存多 作者单位:江南大学 2. 文章题目:发芽对糙米主要营养成分、生理功效和加工特性的影响 期    刊:【博士】江南大学 发表时间:01 Dec[查看]
http://cxbio.com/Article/Referenceseebioppzzcp2013nwxy_1_1_1.html
不可思议!药物的副作用竟然能够治疗人类脱发!
首先研究人员阐明了一种古老免疫抑制药物—环孢素A(CsA)的分子作用机制,20世纪80年代,环孢素A作为一种关键药物能够抑制器官移植的排斥反应和患者机体的自身免疫疾病。然而这种药物通常会产生严重的副作用,但研究者却发现环孢素A能增强毛发的生长。文章中研究人员利用环孢素A处理离体的人类毛囊细胞,同时进行了一项完整的基因表达分析,结果表明,环孢素A能降低SFRP1蛋白的表达,SFRP1能够抑制包括头发毛囊在内的许多组织的发育和生长。[查看]
http://cxbio.com/Article/bksyywdfzyjrngzlrltf_1.html
人类胚胎干细胞重塑生物学概念并进入临床
1998年,当研究人员最早弄清楚如何获得人类胚胎干细胞时,Dieter Egli正要开始念研究生。此后的20年里,这种多产细胞一直伴随着Egli的职业生涯。这位如今在美国哥伦比亚大学工作的生物学家,利用它们探寻了来自成人细胞的DNA如何被重新编程成胚胎状态,并且解决了关于糖尿病发生和治疗的问题。Egli甚至帮助开发了一种全新的人类胚胎干细胞形式。其能简化关于不同人类基因作了什么研究。[查看]
http://cxbio.com/Article/rlptgxbzsswxgnbjrlc_1.html
单次注射特殊制剂有望终生治疗B型血友病患者
编码凝血因子IX (FIX)的基因出现缺失就会诱发B型血友病,血友病患者机体中凝血因子IX的水平通常较低,而且常会缺失功能性的基因版本,从而就会造成危及生命的血凝延迟状况;如今临床上常常使用由动物细胞制造并且纯化的FIX来给患者接种有效其病情,患者每周需要接种数次,但这种治疗手段比较昂贵、耗时,而且随着时间延续治疗效果将会越来越差。[查看]
http://cxbio.com/Article/dczstszjywzszlbxxybh_1.html
利用干细胞技术与<font color='red'>基因</font>编辑技术建立人类<font color='red'>基因</font>组功能蓝图
研究者们通过生成180000种不同的突变,对人类基因组中的所有基因功能进行了分析。其中,他们构建出了一种仅存在一对染色体的新型胚胎干细胞,并使用了CRISPR-CAS9技术进行大规模突变体的筛选。由于单倍体的特征,基因突变的构建相比野生型细胞更加容易。[查看]
http://cxbio.com/Article/lygxbjsyjybjjsjlrljy_1.html
美国科学家潜心研究30年,迎来端粒酶重大突破,有望逆转衰老问题
用低温电子显微镜(cryo-EM)测定人端粒酶全酶结构的空间填充模型。端粒酶催化染色体末端的端粒DNA(绿色)的合成,以补偿基因组复制过程中端粒的丢失。该结构由两个具有不同功能的裂片组成:负责DNA合成的催化核和一个H/ACA核糖核酸,对端粒酶的生物起源和对Cajal体的定位很重要。由于端粒酶的调控与癌症和衰老有关,因此人类端粒酶的第一个体系结构可视化是端粒酶领域和端粒治疗设计的一个重要突破。[查看]
http://cxbio.com/Article/mgkxjqxyj30nyldlmzdt_1.html
<font color='red'>基因</font>编辑的干细胞有望消除HIV!
现在,研究人员在感染SHIV并接受抗逆转录病毒治疗的猕猴身上使用相同的技术,使它们与正在接受治疗以降低HIV水平的HIV病人相似。研究人员发现在移植了CCR5基因突变的骨髓干细胞后,这些细胞在猕猴体内成功增殖,产生了携带CCR5突变的白细胞,因此对SHIV产生了抗性。[查看]
http://cxbio.com/Article/jybjdgxbywxchiv_1.html
重大突破!揭示一种罕见的儿童脑瘤的细胞起源
在一项新的研究中,来自美国布罗德研究所、麻省总医院、达纳-法伯癌症研究所和波士顿儿童癌症与血液疾病中心的研究人员通过分析来自4名DMG患者的3300多个细胞的基因表达,发现这类肿瘤可能起源自少突胶质祖细胞(oligodendrocyte progenitor cell, OPC)样细胞,这些OPC样细胞处于一种未成熟的可快速分裂的干细胞样状态。[查看]
http://cxbio.com/Article/zdtpjsyzhjdetnldxbqy_1.html
挑战常规!维持骨髓造血干细胞所需的TPO蛋白竟由肝细胞产生
在一项新的研究中,来自美国哥伦比亚大学医学中心的研究人员着重关注维持造血干细胞所必需的促血小板生成素(Thrombopoietin,TPO)分子。他们利用基因敲入小鼠证实TPO是由肝细胞产生的,而不是由骨髓细胞产生的,这一发现挑战了人们的常规看法:鉴于造血干细胞主要存在于骨髓中,人们的直接看法就是TPO是由骨髓产生的。[查看]
http://cxbio.com/Article/tzcgwcgszxgxbsxdtpod_1.html
科学家阐明病毒利用宿主细胞中关键蛋白进行繁殖的分子机制
随着现代DNA测序技术的发展,科学家们能够非常容易地在一个有机体中鉴别出所有编码蛋白质的基因,然而他们常常却无法有效理解这些蛋白质的细胞功能,文章中,研究人员就重点对一种名为ZC3H11A的人类基因进行了深入研究,长达20年时间研究人员一直并不清楚该基因功能的重要性,Shady Younis博士说道,很多年以来我们一直非常感兴趣对该基因进行研究,最终我们利用CRISPR-Cas9基因编辑技术实现了在人类细胞系中失活该基因,然而,ZC3H11A基因的失活似乎并未产生太大效应,这就表明,该基因似乎对人类细胞的生长并不必要。[查看]
http://cxbio.com/Article/kxjcmbdlyszxbzgjdbjx_1.html
Nat Genet:揭开困扰科学界50年的奥秘
近日,一项刊登在国际杂志Nature Genetics上的研究报告中,来自澳大利亚新南威尔士大学的研究人员通过研究利用CRISPR基因编辑技术成功将有益的天然突变引入到了血细胞中,从而就能增强血细胞和胎儿血红蛋白的产生,相关研究或能帮助研究人员开发治疗镰状细胞贫血和其它血液障碍的新型疗法。[查看]
http://cxbio.com/Article/natgenetjkkrkxj50nda_1.html
突破!新技术或能成功追踪胚胎祖细胞发育至多细胞有机体的整个过程
胚胎发育是高度复杂的有机体发育的一个重要阶段,比如人类,仅有非常有限的胚胎祖细胞能够成功制造出成年机体内部所有类型的细胞,为了理解这一过程发生的机制,研究人员就需要新方法能够测定克隆历史的发生,同时还能在单细胞分辨率下进行细胞的识别;基于此,研究人员开发出了一种名为ScarTrace的新技术,该技术能够添加荧光蛋白转基因的串联拷贝,从而就能在CRISPR-Cas9基因编辑的转录过程中有效识别所遗留的“疤痕”。[查看]
http://cxbio.com/Article/tpxjshncgzzptzxbfyzd_1.html
Nat Commun:新型<font color='red'>基因</font>编辑技术或能制造出完美的“双胞胎”多能干细胞
DNA的单突变俗称为单核苷酸多态性(SNPs),其是人类基因组中最常见的突变,如今研究人员已经知道有超过1000万个SNPs,很多SNPs都与多种人类疾病直接相关,比如阿尔兹海默病、心脏病和糖尿病等,为了理解SNPs在遗传性疾病中的关键角色,本文中,研究人员从捐赠者机体中开发出了诱导多能干细胞(ips)。[查看]
http://cxbio.com/Article/natcommunxxjybjjshnz_1.html
Cell Rep:科学家发现一种新型的机体免疫系统调节因子
研究者Riitta Lahesmaa教授说道,我们发现,名为HIC1(Hypermethylated In Cancer 1)的蛋白质或许充当了调节性T细胞的关键调节子,能够帮助控制促进T细胞功能发挥的大量基因进行表达;此外,研究人员还利用全基因组学的技术进行研究发现,HIC1能够结合到细胞核的特殊位点上,而这些位点中经常含有和免疫介导性疾病相关的遗传突变。[查看]
http://cxbio.com/Article/cellrepkxjfxyzxxdjtm_1.html
Science:重磅!首次实时观察到凝缩蛋白挤压DNA形成环状结构
引人注目的是,活的细胞当准备分裂时,能够将一堆杂乱的长达两米的DNA包装成整齐的微小染色体。然而,科学家们几十年来一直对这个过程是如何发生的感到困惑。如今,在一项新的研究中,来自荷兰代尔夫特理工大学卡夫利研究所和位于德国海德堡的欧洲分子生物学实验室(EMBL)的研究人员分离出这个过程,拍摄它的影像,并且实时观察一种被称作凝缩蛋白(condensin)的蛋白复合物如何缠绕DNA从而挤压出环状结构(loop)。通过在DNA长链中挤压出许多这样的环状结构,细胞高效地压缩它的基因组,因此细胞中的基因组能够均匀分布到它的两个子细胞中。相关研究结果于2018年2月22日在线发表在Science期刊上,论文标题为“Real-time imaging of DNA loop extrusion by condensin”。[查看]
http://cxbio.com/Article/sciencezbscssgcdnsdb_1.html
记录总数:530 | 页数:36  <...18192021222324252627...>